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i. INTRODUCTION

The ASTF CI Test Cell is to be configured for propulsion tests of NASP

engines over flight Mach number conditions ranging from 0.5 to 3.8. This

facility is capable of continuously generating a 5' x 5' square free air jet

flow field at a local Mach number up to 3.32 with a density of between 0.134

and 0.048 amagat and a static temperature of 257 K or less (see Table i).

It is the goal of this report to examine the potential of the RELIEF (Raman

Excitation + Laser-Induced Electronic Fluorescence) velocity measurement

technique for measuring the three-dimensional velocity profile across the

exit plane of this jet and the entrance plane to the test engine under these

conditions. Velocity measurements must be done to an accuracy of better

than 1%. Flow direction must be measured to better than I° for inlet

performance evaluation. Measurements to these specifications need to be

done with a grid spacing of approximately 1/100th of the cross-sectional

dimension of the free jet exit in a time not greater than 30 seconds.

The RELIEF velocity measurement method is based on vibrationally tagging

oxygen molecules and observing their displacement after a short period of

time (i). It requires a Nd:YAG laser for tagging the molecules, an argon-

fluoride laser for interrogating the molecules after they have moved, and a

camera system to image the displacement. A simplified diagram of the RELIEF

set-up is shown in Fig. I. The RELIEF technique has recently been used to
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measure the velocity of a small Mach 2 pressure-matched free jet to

approximately 0.5_ accuracy. The technique has previously been applied in

an underexpanded free jet air flow up to Mach4. In that instance, however,

the static temperature was approximately 60 K and the pressure was

approximately I psi. The corresponding density, 0.288 amagat, was

considerably greater than that expected in the ASTFCI facility during Mach
3.8 operation. While this reduction of density is of concern, it should be

noted that the higher temperature in the ASTF facility significantly

enhances the interrogation signal intensity. Densities as low as 0.13

amagat at room temperature have been observed in stationery air. Reaching

densities as low as 0.048 amagat is expected to be achievable, particularly
in view of the large size of the lines to be marked, but further research is

needed to verify that expectation.

In order to achieve the required number of velocity measurementswithin the

30 second time interval, multiple intersecting lines must be written into

the wind tunnel facility. Multiple line marking has previously been

accomplished in free jets, but this has been done by reflecting the tagging

laser beamsback through the test section. In the ASTFfacility it is best

to design a system that is single-ended, so that the mirrors on the other

side of the flow field do not have to be included. Furthermore, the tagging

lines should extend across the test section, if possible, so that dynamic

refocussing of the optics is not required. Due to diffraction effects, this

means that the diameter of the lines to be marked will be significantly

larger than those previously marked in the small free jet. As a
consequence, a tagging laser source capable of much higher peak power than

the sources presently in use will be required. This suggests the use of a

picosecond laser system rather than a nanosecond laser system for tagging.

The increased size of the lines has the advantage of significantly

enhancing the number of photons collected per resolvable element. By

employing a picosecond laser source and by scaling up the light detection

collectors as well as the interrogation laser source, multiple line grids

can be marked into the ASTFCI facility and interrogated for high accuracy,

three-dimensional velocity field measurements.
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This report outlines the specific details of such an apparatus. In some

cases, such as for that of the picosecond laser source, the operating

performance has not yet been determined. In other cases, such as for the

interrogation system and the imaging camera, performance can be scaled from
present laboratory results. Issues relating to optical access and the

geometry of the ASTFflow facility are also addressed in this report. It is

the goal of this effort to design a RELIEF-type system which fits within the

geometrical constraints of the actual test configuration for the NASP

engines.

A complimentary study is underway at Princeton University in the Applied

Physics Laboratory to measure the vibrational relaxation dynamics of oxygen
in the presence of other molecular species which are characteristic of the

air in the ASTFCI facility. The principle goal of this study is to assure

that oxygen is vibrationally relaxed as it exits from the nozzle so that

there is not a significant amount of background scattering from

vibrationally excited oxygen molecules which might otherwise obscure the

RELIEF signal. RELIEF measurementshave, to date, been made up to 700 K

(2). But it is clear that a significant vibrational nonequilibrium will

cause a degradation in the signal level and may limit the RELIEFdiagnostic

performance. While it is highly unlikely that a significant vibrational

nonequilibrium exists in the nozzle exit of the ASTF CI facility, the

complimentary study will assure that this is the case and will also delimit

other environments in which the RELIEFdiagnostic method might be applied.

2. FLOWTAGGING

Figure 2 shows an energy level diagram of the RELIEFprocess. The up and
down arrows on the left indicate the tagging step in which two high-

intensity lasers, separated in frequency by the vibrational frequency of

oxygen, drive the molecules into their first vibrationally excited state.

Since this step is a nonlinear process, these two lasers must be focussed to

high enough intensity (watts/cm2) to drive a significant fraction of the

molecules into the vibrationally excited state. The third arrow corresponds
to the ArF laser which drives the excited molecules to an upper electronic
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state after they have moved. This step is a linear process, so the ArF

laser must have an energy fluence (joules/cm 2) high enough to further excite

as many of the tagged molecules as possible. While most of the molecules

dissociate, some return to the lower electronic manifold and radiate light

(wavy arrows) which is imaged by the camera.

In the initial experiments, the apparatus consisted of a frequency doubled

Nd:YAG laser (532 nm) and a frequency tunable dye laser (580 nm). Part of

the Nd:YAG laser beam was used to pump the dye so that both lasers were

synchronized in time. This configuration required that the dye laser beam

be overlapped spatially with the frequency doubled Nd:YAG laser beam, that

the dye laser be properly tuned so that the frequency difference

corresponded to the vibrational frequency of oxygen, and that proper delays

be incorporated so that the two pulses arrived at the sample volume at the

same time. More recently, a much simplified system has been designed (shown

in Fig. I) which uses a high-pressure stimulated Raman cell to generate the

second beam required for tagging (3). In the most recent configuration, a

high-intensity, frequency-doubled Nd:YAG laser beam is passed into a high

pressure cell containing a mixture of helium and oxygen gas. Through

frequency conversion by stimulated Raman gain, a portion of the energy of

the frequency-doubled Nd:YAG laser is converted to a second laser beam which

is lower in frequency by the vibrational frequency of the oxygen molecules

in the cell. As a consequence, two beams exit the cell, the residual 532 nm

frequency-doubled Nd:YAG laser light and a newly generated spatially

overlapping 580 nm beam. By properly selecting the pressure in the high

pressure stimulated Raman cell, the frequency difference between these two

beams can be made to coincide with the vibrational frequency of oxygen in I

atm or lower pressure air. As a consequence, the two beams can be

refocussed into the test facility to mark lines by vibrationally exciting

the oxygen molecules.

At present, work is underway to improve the conversion efficiency of the

high pressure stimulated Raman cell to achieve the optimum intensity balance

between the two beams. Ideally, both the residual 532 nm and the generated

580 nm beams have the same intensity to most efficiently mark the flow
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field. The present cell configuration gives a maximum of approximately 15%

conversion, which, with other losses, yields approximately a 5:1 intensity

ratio between the residual doubled Nd:YAG laser and the newly generated

beam. Attempts to improve the conversion efficiency are underway using

multi-pass cells or laser dyes. Nevertheless, very good tagging has been

accomplished using the present configuration. The major motivation to move

towards the ideal intensity ratio is to avoid optical breakdown of the air

and damage to windows. Another important aspect of the high pressure

stimulated Raman gain method for generating the tagging laser beams is that

the Nd:YAG laser can be operated at broad bandwidth and simultaneously

generates a broad bandwidth of shifted light. This broad bandwidth allows

simultaneous pumping of several oxygen rotational states for flow marking.

Since the molecules are distributed in various rotational states by thermal

mechanisms, this means that a larger percentage of molecules is available

for flow tagging and, consequently, stronger lines can be written.

In order to upgrade this tagging capability for the ASTF facility, a large

increase in laser intensity is required. This arises from two causes: the

first is that lines on the order of 1.5 meters in length need to be written

with the laser system. As a consequence, the laser beams cannot be focused

as tightly as in the small-scale facility heretofore used. The increase in

the beam area must be compensated for by an increase in the power in order

to maintain intensities at the level required for tagging. The second

reason that higher powered lasers are required is that numerous lines must

be written into the flow field simultaneously in order to generate grid-type

patterns for multiple velocity measurements during a single pulse. Since

the laser systems will have a maximum repetition rate of approximately 15

pulses/second, and only 30 seconds is available for the measurement time, a

minimum of 23 velocity measurements must be made with each pulse in order to

achieve the 104 velocity elements desired.

a. Saturated Tagging

In order to achieve the highest tagging efficiency possible, the oxygen

molecules must be driven into saturation by the tagging laser pulses. The

concept of saturation implies that the population has reached an equilibrium
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where the pumping rate out of the ground state and into the excited state is

just equal to the collisional energy transfer rate into the ground state and

out of the excited state. In the case of oxygen, the collisional processes

are most likely rotational energy transfer collisions for both vibrationally

excited and unexcited molecules. In oxygen at I atm pressure, the intensity

product of the green (532 nm) and the orange (580 nm) corresponding to

saturation, K, has been measured to be approximately 4.2 x 1021 W2/cm 4 (4).

This measurement was made with a very narrow frequency 532 nm beam and a

narrow linewidth tunable dye laser in the vicinity of 580 nm. The number is

probably high for this configuration since the beam profiles of the two

lasers were not identical, and, therefore, the overlap in the sample volume

was imperfect. (The effect of the laser bandwidth, particularly as a

function of the air density has also not been explored.) For lack of a

better estimate, we will use the value of 4.2 x 1021 W2/cm 4 for scaling.

The lasers used had I0 nsec pulse lengths, and one can assume that at

saturation, the pumping rate just equalled the collisional rate:

w - IGIoA - i/_ (i)

Where W is the pumping rate in transitions per second per molecule, IG is

the intensity of the 532 nm laser (green), I0 is the intensity of the 580 nm

laser (orange), A is a constant, and T is the time between collisions. This

expression must be scaled for different densities and different laser pulse

lengths in order to determine optimum intensities. At i atm, pure oxygen

has a time between collisions of approximately 6 x I0 -II seconds (3). So

long as this time is short compared to the laser pulse length, the

saturation model still applies. In the regime where the laser pulse length

is shorter than the collision time, coherent phenomena occur and it may be

possible to achieve very large populations in the vibrationally excited

state by coherent excitation. Due to the different angular momentum quantum

numbers associated with each transition, a calculation of that population

would require sophisticated quantum mechanical modelling as well as full

knowledge of the temporal and frequency characteristics of the pump.

However, with shorter pulses, one can experimentally optimize the pumping by
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observing signal intensity. With i0 nsec lasers, this coherent regime will

occur with gas densities less than 0.006 amagat. By shortening the laser

pulse length we can move into this regime at gas densities corresponding to

those projected for the experiment. For example, a i00 picosecond laser

would pump molecules in the collisionless regime for gas densities 0.6 or

less of atmospheric. Such a laser also has i00 times higher power for the

same pulse energy as a i0 nsec source. If the conversion efficiency of this

type of laser in a high pressure stimulated Raman cell were to be the same

as that of a I0 nsec laser source, we would achieve an intensity product

i0,000 times higher for the same pulse energies.

It is this dramatic increase in the pumping which makes picosecond sources

particularly attractive for the ASTF facility. A picosecond laser allows a

reduction of the energy of the laser beam with a simultaneous increase in

the power. The reduction in energy reduces the breakdown threshold, a

problem both in the gas and at windows. The higher power leads to an

increase in intensity which means that the laser need not be focused as

tightly and, consequently, longer lines can be written. An additional

benefit of a picosecond source is that competing mechanisms in the high

pressure stimulated Raman cell, including backward Brillouin and backward

Raman scattering are suppressed by the short pulse length. If the pulse is

transform limited, i.e., the frequency bandwidth is just the Fourier

transform of the pulse time profile, then the product of the pulse time

(full width at half maximum) times the pulse bandwidth in Hz (full width at

half maximum) equals 0.44. Thus, a I00 picosecond source has a minimum

linewidth of 0.15 wavenumbers (4.4 "GHz). In practice, the I00 picosecond

commercially available Nd:YAG laser source (Continuum) is not transform

limited and has a linewidth of approximately i wavenumber. This i

wavenumber linewidth is capable of overlying the J-1,3,5, and 7 lines

simultaneously for vibrationally tagging oxygen molecules. At 200 K, 539 of

the oxygen molecules fall into one of these levels. Preliminary experiments

using a picosecond laser source at the Princeton Plasma Physics Laboratory

indicate that very high conversion efficiency in the high-pressure simulated

Raman cell can be expected. Further research with the picosecond laser

source, including the design of the high-pressure stimulated Raman cell and
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efficiency of flow tagging, will be required to determine if these

predictions are, in fact, true.

b. Focusln_

Due to the refraction of light, there is a fundamental limit on the region

intensity laser can be focussed. This is usuallyover which a high

expressed as:

b

2
2z w

o

(2)

where b is the confocal beam parameter and it is the distance between the

points where the intensity drops hy a factor of 2, compared to the highest

intensity point, wo is the beam waist measured as the I/e 2 intensity radius

of a Gaussian beam across the point of highest intensity. % is the

wavelength of the laser. By integrating across the focal point, an

equivalent area associated with the peak intensity can be found. In other

words, if the peak power of the laser is P, then the peak intensity, I, will

just be P/A, where:

A = b%/4 (3)

With the I0 nsec laser sources that are currently used, saturation intensity

is achieved when I - /-K - 6.5 x I0 I0 W/cm 2. If the laser energy is I00

•mJ/pulse, it has a peak power of approximately 107 W, so to achieve strong

tagging, the beam must be focussed to an area of 1.5 x I0 "4 cm 2. This

corresponds to a beam waist of approximately i00 microns, or, at 532 nm, a

confocal parameter of 12 cm. This implies that the line marked will be on

the order of 12 cm long. In order to increase that distance to 1.5 meters,

the beam area must be increased by a factor of 12.5, or the beam waist by a

factor of 3.5. Consequently, to maintain the same intensity, the power of

the lasers must be increased by a factor of 12.5. Thus, a 1.25 J beam would

be necessary at both frequencies, requiring a Nd:YAG laser with an output in

excess of 3 J. Clearly, such a laser would be very difficult to build and

might require that the last stage be a glass amplifier so that the

repetition rate would be severely limited. The alternative approach,
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therefore, is to move towards picosecond sources, where the power can be

dramatically increased. For example, a i00 picosecond Nd:YAGlaser source
with an output energy of i00 mJ will have a peak power I00 times that of the

I0 nsec source. This is well in excess of the factor of 12.5 required to

mark a single 1.5 meter long line. The excess energy of such a source can

therefore be used to simultaneously mark multiple lines so that many

velocity components can be recorded with a single pulse.

The tagged line persists as long as the oxygen molecules remain

vibrationally excited. In pure oxygen at I amagat this corresponds to 27

milliseconds (5). The vibrational lifetime of oxygen will, however, be

substantially shorter in the presence of other molecular species. This is

particularly true in the presence of water vapor which is a triatomic

molecule with a vibrational energy level that is close to the vibrational

energy of oxygen. Our preliminary measurements indicate that oxygen in the

presence of saturated water vapor levels at I arm and room temperature

corresponding to 0.02 mass fraction has a lifetime on the order of 2.0 _secs

(6). Other molecules that may possibly be strong quenchers include CO 2 and

ozone. The quenching rate of oxygen by nitrogen is expected to be slow

since nitrogen is a diatomic molecule whose energy levels are far from those

of oxygen. Nitrogen itself has a very long vibrational relaxation lifetime

since it, like oxygen, is a homonuclear diatomic molecule and cannot

directly radiate energy. In the ASTF CI facility, the air has a water vapor

content of between 0.4 and 0.6 grains/pound mass. This corresponds to a

mass fraction of 7.1 x 10 .5 (7000 grains equal i pound mass). Scaling from

2 _sec, we can expect a vibrational lifetime of more than 500 _sec, or 1/2

meter of distance at i000 m/sec. This estimate assumes a density of i

amagat. At a density of 0.13 amagats, tagged lines should persist for

several meters downstream. In high Mach number facilities which are

visciated (heated by combusting a portion of the air), the water content in

the flow stream is high, so the vibrational lifetime of the oxygen is

substantially less.

For high accuracy velocity measurements, the time between tagging and

interrogation needs to be long enough so that the displacement downstream is
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large compared to the line diameter. For a flow field of 1,000 m/sec, a i0

sec delay corresponds to I cm. For the accuracy needed for these
measurements, a displacement of a few centimeters will be sufficient.

Consequently, vibrational lifetimes on the order of several tens of
microseconds will suffice. At present, measurements are underway at

Princeton to establish more precisely the relaxation time of oxygen in the

presence of other gas species. However, achieving delay times of this order

are not expected to be a problem.

In addition to vibrational relaxation, the tagged line experiences some

broadening due to thermal diffusion. The broadening expression is:

w' - (4AID + Wo2)I/2 (4)

where w' is the Gaussian line radius, D is the molecular diffusion constant,

and At is the time between tagging and interrogation, wo is the beam radius

of the line when it is written. At i atm, D - 0.21 cm2/sec. From this

expression it is clear that thermal diffusion becomes important when the

diffusion scale is on the same order of magnitude as the linewidth. With

the large linewidths expected to be written into the ASTF flow, thermal

diffusion will be unimportant.

c. Optical Breakdown

At the high intensities required for flow tagging, optically induced

breakdown becomes a potential problem. In the most serious case, the air

itself can be broken down by the laser beams. More likely, however, will be

the breakdown of dust particles or other contaminates in the flow field. A

third concern is optical breakdown of window material, particularly when

windows are placed close to the flow field region so the intensities of the

tagging laser beams passing through the windows are high. A precise

evaluation of the breakdown threshold is difficult since breakdown is a

statistical event. Breakdown occurs due to the combined effect of

multiphoton ionization and cascade ionization. Through multiphoton

ionization, the laser produces a few electrons which are subsequently

accelerated by the strong laser field and through collisions generate a
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cascade which becomes a breakdown. In atmospheric pressure air, breakdown

occurs in the vicinity of 50 GW/cm 2 with a i0 nsec laser at 532 nm. Note

from the previous section that this is approximately the same as the

saturation intensity for line tagging. As a consequence, for nanosecond

lasers, the peak intensity must be reduced below saturation in order to

avoid optical breakdown. It is important to note, however, that while the

multiphoton ionization process is largely related to laser intensity, the

cascade process requires time for the electrons to accelerate and collide

with other atoms. Thus, optical breakdown is substantially less of a

problem for picosecond sources. For example, in oxygen the breakdown

threshold increases to 5 x 1013 W/cm 2 if a 25 picosecond source is used at

532 nm (7). In this regime, collisions do not occur during the pulse and

the breakdown is largely due to multiphoton ionization. As the pressure

increases beyond several atmospheres, cascade processes become important and

the breakdown threshold decreases. At the low densities in the ASTF CI flow

facility, breakdown will be in the multiphoton limit if sources with pulse

lengths on the order of i00 picoseconds or less are used. A similar

reduction in breakdown problems with impurities and dust is expected,

although a quantitative evaluation of that has not been done.

The breakdown threshold of window material is on the order of 20 GW/cm 2 and

is a serious problem if the high intensity beams are to pass through windows

close to the tagging region. Due to the very long confocal parameters

required for long line marking, the beams will have high intensities for

several meters outside of the flow field regime. For the experiments done

to date, the windows have been placed many confocal beam parameters away,

which has not been difficult since the marked lines and, consequently, the

confocal beam parameters have only been a few centimeters in length. For

the ASTF CI facility, however, the confocal beam parameter will be on the

order of 1.5 m, so windows will need to be located several meters from the

test section. The use of picosecond lasers may alleviate this problem

significantly since, once again, the breakdown threshold is significantly

increased. For example, the breakdown threshold of quartz with a i00

picosecond laser is expected to be I0 II W/cm 2 which is somewhat above the

saturation intensity for flow tagging. This, of course, assumes that the
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windows are clean and, even so, the statistical nature of breakdown may lead

to random breakdown events at significantly lower intensity levels. As a

consequence, it is advisable to avoid passing the tagging beams through

windows if at all possible.

3. INTERROGATION

The interrogation of the marked lines is accomplished using an injection-

locked argon-fluoride laser whose frequency is tuned to overlap a transition

from the V"-I vibrational state of the ground electronic manifold to the

V'-7 vibrational state of the excited electronic manifold. Subsequently,

fluorescence from the V'=7 state is recorded by a camera so the line

positions can be imaged. The very rapid predissociation rate of the upper

electronic state of oxygen assures that fluorescence only occurs during the

time the interrogating laser source is on. Typically, the argon-fluoride

laser pulse lasts I0 nsec, so the interrogation is effectively

instantaneous. In order to capture the displaced line, the interrogation

volume must be large enough to accommodate the uncertainty in the flow

velocity. The maximum interrogation volume is determined by the energy of

the laser and the saturation fluence of the transition. (Fluence is defined

as the energy/cm2.) The saturation fluence of a transition corresponds to

enough photons per unit area to excite all of the molecules within the

volume. Consequently, the fluorescence signal level does not increase at

fluences greater than the saturation fluence, so this determines the optimum

focusing area for a particular interrogation source.

For vibrationally excited oxygen, the interrogation transition has a

saturation fluence of 150 mJ/cm 2. If we assume we have a i00 mJ argon-

fluoride laser, then the beam can be focussed to a total area of 0.67 cm 2 or

less in order to produce the maximum interrogation signal strength. If the

beam is focussed to this fluence and passed through the flow field, any

marked lines falling within the illuminated volume will be interrogated.

Since the flow has a predominate velocity vector, the interrogation beam may

be shaped into a rectangle so that it forms a thick "slab" as it passes

through the flow field. The orientation of this slab is then optimized to

capture the displaced lines. The normal output of the argon-fluoride laser
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(LambdaPhysik LPX 301) is a rectangular beamon the order of 3 cm x I cm.

If this laser can be operated injection-locked with a 1.2 joule output, this

beam can be expanded and passed through the flow field to give a 4.9 cm x

1.6 cm slab extending all the way across the jet exit. This volume will

capture a line displaced up to 4.9 cm with ± 9 degrees directional

uncertainty. Of course, the sample volume can be moved farther downstream
or reshaped to permit even greater displacements, but the direction of the

velocity vector must be known to increasingly better accuracy. For initial

measurements, it is wise to have the interrogation volume include the

original tagged lines so the motion of the flow can be tracked from zero

delay. Directional uncertainty in the plane of the interrogation slab does

not create a problem since the lines are not convected out of the
interrogation volume.

An area of concern is the ability of the interrogation laser to penetrate

through the high temperature boundary layer and into the flow field.

Whereas cold oxygen does not significantly affect the interrogation

capability of the argon-fluoride laser, hot oxygen does. The presence of

vibrationally hot oxygen in the boundary layer region will cause some

portion of the argon-fluoride laser light to be absorbed before it reaches
the high-speed region. That increased absorption level can be seen from

Figs. 3 and 4. Figure 3 shows the molecular oxygen absorption in air at I

atm and 300 K. Flow field interrogation is done on the P(19) and R(21) line

transitions in the vicinity of 193.07 nm, as indicated in Fig. 3. Note that

atmospheric pressure room temperature air has a small amount of absorption
(0.003 cm"I) at this wavelength froma small amount of vibrationally excited

molecules naturally occurring in the atmosphere. This indicates that the
intensity will be reduced by e-I after 3.33 meters. Figure 4 shows the

absorption profile of oxygen in air at 0.13 amagat at a temperature of 750

K. These conditions are similar to what is expected in the boundary layer

of the Mach 3.8 ASTF CI facility. Note that the absorption at 193.07
microns is increased to approximately 0.018 cm°I This is because, although

the density of the air is significantly less, the temperature is higher, so
a larger proportion of the molecules are in the first vibrational state and

a larger proportion of those are in the J = 19 and 21 rotational energy
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states. This factor of 6 increase in the absorption will cause some

attenuation of the argon-fluoride laser beam as it penetrates into the flow

facility across the boundary layer. For example, if the boundary layer is

i0 cm thick, 16_ of the laser light will be lost passing through it. This

loss is equivalent to that seen in a 60 cm path length through room air. We

note here that this suggests that, not only should the distance through the

boundary layer be kept to a minimum, but the path of the laser beam passing

into the flow facility will need to be purged with nitrogen or evacuated in

order to minimize light loss. We should also point out that if the ArF

laser can be frequency shifted with a deuterium Raman shifter, the

fluorescence intensity can be increased by a factor of approximately I00,

even taking into account only a few percent conversion efficiency. Work on

this has been done by researchers at SRI (8).

4. CAMERA SYSTEM

The camera system must collect and image the laser-induced electronic

fluorescence from the tagged lines at the time of interrogation. Since

signal levels are critical, it is important to build a camera system which

is capable of collecting as much light as possible. This leads to a large

aperture camera system placed close to the flow field. In order to

simultaneously resolve all three components of the velocity vector, two such

cameras are required to provide stereoscopic images. In general, the camera

system consists of a large diameter, low f number collection lens which

forms an image on a double-intensified microchannel plate intensifier which

is then coupled by optical fibers to a high resolution television camera.

The development of the lens and camera system will be an important part of

the ASTF project. Several important considerations need to be kept in mind.

The first is that large aperture collection optics have an intrinsically

small depth-of-field. This means that the observation plane is well defined

and sources outside of that observation plane become rapidly defocused. In

some cases, this defocusing might be used to determine out-of-plane velocity

components. The major impact, however, is to limit the interrogation volume

of the camera system. It is important, therefore, that the interrogation

volume of the camera be carefully matched to the argon-fluoride laser

illumination volume to optimize the system. A second consideration is the
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rather narrow field-of-view which these cameras can observe. Approximately

15° is typical. In order to get high collection efficiency, and low

chromatic aberration, a reflector-type lens system is the most promising

candidate. The difficulty is that low f number collection optics typically
have significant off-axis distortion (coma). Coma can be corrected for

specific object plane distances by incorporating an optical element at the

entrance aperture to the camera. Alternatively, there are some

configurations which can be built which have no coma. Advancedconcepts in

lens design have been proposed by La-Vision and Nye Optical Corporation,

amongothers.

As an example, we choose the standard Nye Optical high-speed 150 mmfocal

length f/l.4 lens. If the observed line segment is 2 meters from the lens,

the image plane will be 162 mm from the lens. This ratio leads to a

demagnification factor, M = 12.3. The angular field-of-view of this camera
is 16.5° , corresponding to 58 cm. With the demagnification, this leads to

an image plane width of 47 mm. Such a camera system would capture 2.24 x
10.3 steradians of the scattered light, or approximately a factor of 5

smaller solid angle than in the small-scale experiments done to date. This

factor of 5 would be more than compensated for by the larger volume of

tagged oxygen molecules. Nye Optical also believes they could build a 300

mmf/.9 UV lens system that would be capable of capturing 9 times the light

level. This optical system is expected to have a collection angle of
greater than 12°, leading to a 42 cm field-of-view at 2 meters. Such a lens

would have a demagnification of approximately 5.7, so the 42 cm would be

projected onto a 73 mm image plane. Standard size microchannel plate
intensifiers are 18, 25, 40 and 75 mm in diameter (ITT). In order to

capture this field-of-view, a 75 mmintensifier would be needed. From the

75 mmimage intensifier, optical fiber bundles may be used to transfer the

image onto CCD or CID video cameras. In order to preserve the high
resolution, it will be necessary to break the image into several sections,

each connected to a separate videocamera. For example, a 2 x 2 or 3 x 3

array of sections may be connected to 4 or 9 video cameras so that high

resolution can be maintained over a wide field-of-view. Since the important
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portion of the field is a line which only movesa short distance, breaking

the image into 2 or 3 segmentsalong the line might be preferable.

In both collection lens arrangements the field-of-view is significantly less
than the distance across the test section (5 feet or 1.5 meters). One

potential way of significantly increasing the field-of-view in one dimension
is to rotate the image plane so that a slanted planar field-of-view is

imaged. It is interesting to note that the tangent of the slant angle of

the observed field varies as M (the demagnification) times the tangent of

the slant angle of the image plane. A diagram of this relationship is shown

in Fig. 5 (9). This sort of imaging is often done with a bellows-type

camera. By slanting the image plane 26° , a system with a magnification of

5.7 will observe an object plane slanted at 70° . The 150 mmlens will give
the same angle with only a 13° rotation. Given the same field-of-view of

the camera system, this will increase the observation plane extent by a

factor of 3, which is approximately what is needed to extend the collection

system to simultaneously observe all the way across the flow field. There

will, of course, be some image distortion which will have to be accounted

for with the image processing software. By using two-such camera systems,
each placed at a 20° angle on either side of the interrogation light sheet,

stereoscopic images of a full cross-sectional portion of the flow field can

be simultaneously imaged.

The resolution of the system will be determined by the microchannel plate

intensifier pore size, the connecting optics, and the number of CCDor CID

pixels in the videocamera system. The 75 mmITT double microchannel plate

intensifier has approximately a I00 micron point spread function. This

meansthat there are approximately 750 channels across the intensifier face.

By using tapered fibers or secondary imaging optics, the output of this

intensifier could be imaged onto standard ii nunCCDor CID videocamera

arrays. Typical arrays have between 450 and 500 lines horizontal, and 484

lines vertical. Thus, a single camera observing the full 75 mmfield will
have a resolution limit of approximately 160 microns, whereas a multicamera

system will have a resolution limit determined by the microchannel

intensifier resolution. With the demagnification factor of the optical
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collection system, a I00 micron resolution corresponds to 570 microns at 2
meters. This is the sameorder as the width of the line to be written. If

one makes the assumption that the center of the line cannot be determined to

better than I resolvable element (a conservative assumption since the line

can usually be fit with better accuracy), then a 19 velocity measurement
will require that the line move i00 times the 570 micron minimumresolvable

distance, or 5.7 cm. If a slanted object plane is used, then somewhat

greater displacement may be required in order to accurately measure the
velocity at the most distant point. The closer points will be observed with
greater resolution.

In order to achieve simultaneous images of multiple velocity components, a
tagging configuration similar to that shown in Fig. 6 can be adopted. As

mentioned earlier, in order to achieve I0,000 velocity measurements in 30

seconds, at least 23 points must be interrogated with each laser pulse.

This can be done by intersecting 14 laser beamsas shownin the figure. Two

beamsare focused such that they write a pair of lines separated by i cm all
the way across the flow field. The other 12 beams can be somewhatlower

power and more tightly focused so that they intersect these two beams at
regular intervals. The purpose of these 12 beams is to introduce small

crosses or "tic" marks on the two primary beamsso that specific locations

can be tracked. Due to the fact that each of the secondary beamsonly needs

to mark a line which is on the order of 2 cm long, the beampower is less

since the focussing area is small. The plane of this marked array lies in

the flow direction and the interrogation laser illuminates the sameplane.

Thus, both lines with all their tic marks can be simultaneously interrogated

as they movedownstream. The cameras can be placed at 20° angles above and

below this plane in order to observe the displaced lines. While only 24

points across the flow field are observed at a single shot, the lines are
continuous, so the velocity profile between the points will be observed. If

needed, the 12 beams can be scanned together over approximately I0 cm to
yield a higher resolution measurementalong the principal lines. This would

not require refocusing of these beams. In order to interrogate the entire
flow field, the plane must be swept or traversed across the flow region of

interest. Since the two principal lines, the tagging lasers, and the
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cameras maintain a constant relationship with one another, all the hardware

can be mounted on a platform which is then rotated or translated to sweep or

traverse the interrogation plane across the flow field.

5. OPTICAL ACCESS AND GEOMETRY

The ASTF CI facility produces a 5' by 5' free jet which will be used to test

the NASP engines. A sketch of the expected configuration is shown in Fig.

7. The NASP engine will be mounted horizontally with its top in contact

with the top lip of the jet exit. The jet will be directed downward at a 7°

angle to simulate the underside of the NASP vehicle. The width of the NASP

engine is expected to be approximately 4 ° , and the bottom of the engine

extends only 3' down, leaving a portion of the jet passing below the engine

to simulate flight conditions. The bottom of the engine is downstream of

the top corresponding to a swept back entrance angle of 47 ° . In order to

avoid shock structures or expansion fans from entering the engine, shrouds

are being placed both at the sides and a lip is being added to the bottom of

the jet exit as indicated in Fig. 7. These shrouds and lip severely limit

the optical access of both the jet exit plane and the engine entrance. The

most reasonable optical access occurs from below the jet facility. However,

this may be substantially obscured if a full 5' lip is added onto the jet.

If this is the case, then there is only a small gap below the engine and

above the lip, through which to pass the diagnostics. Diagnostic beams

passed through this gap may be severely distorted by the bypass air and the

associated free shear layer. Alternatively, quartz windows could be

installed in the lip in order to pass diagnostic beams into the test region.

It is important to pass through as little of the boundary layer or turbulent

by-pass flow as possible in order to avoid beam steering of the tagging

beams, distortion of the image, and absorption of the interrogation laser.

Figure 8 shows a cross-sectional view of the nozzle exit with the flow

tagging system diagrammatically shown, including the cameras at 20 ° angles

to the marking plane. The NASP engine entry is shown in the dotted line.

This apparatus should fit within the 12' diffuser, but will clearly have to

penetrate any smaller diffuser section that might be added. If the laser

beams and detection optics must observe the test section through windows,
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there will be some loss, primarily due to window reflection and dirt which

might accumulate. In addition, the windows will have to be large in order

to provide for large size collection optics apertures and for sweeping or

traversing the flow field. Structurally, the addition of windows is not

expected to be a problem. Fused silica has very good thermal properties and

its tensile strength actually increases at higher temperatures (see Table

II). Quartz is, after all, a ceramic material and its properties are not

unlike those of pyrex. The thickness of the quartz will have to be

determined given the dynamic pressures of the flow field environment, but a

1/4" thick, 6 " by 6" grounded polished plate of Suprasil 2 costs on the

order of $500. Larger plates will, of course, be needed and they will have

to be especially fabricated. The transmission of a i0 mm thick Suprasil 2

window is approximately 90_ at 193 nm. That transmission increases to about

93_ in the visible region of the spectrum.

A potential problem with windows is the burn damage threshold associated

with high-intensity tagging laser beams passing through them. As we

previously discussed, for picosecond laser sources, this may be somewhat

less of a problem than with the nanosecond sources that are used today.

Nevertheless, the long confocal beam parameters required in order to get

long lines marked through the flow field imply very high intensities close

to the marked region. Since the window is at the boundary of the flow,there

is no way of avoiding very high intensities passing through it. The other

end of the laser beams can potentially hit the wall of the tunnel and

generate significant scattering. However, this should not be a serious

problem since marked lines are observed many microseconds later, and the

detection system is collecting light in a different region of the spectrum.

The most desirable arrangement would be to have significant optical access

underneath the jet exit plane and looking up into the engine entrance. For

this reason, any reduction in the length of the bottom lip on the exit jet

would have a substantial benefit. Our understanding is that the ratio of

the test cell pressure to the static pressure of the jet will be kept at or

below the Mach number. At a Mach number of 1.5, a pressure ratio of 1.5

leads to a shock angle of 53 ° . (At Mach 3.4, a pressure ratio of 3.4 leads
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to a shock angle of 31°.) If the lip is designed so the 53° oblique shock

at Mach1.5 does not enter the engine, it need only extend approximately 1.5

feet from the nozzle exit. This could open up an additional 3.5 feet for
diagnostic access.

6. RECOMMENDATIONS

From this study it appears clear that there are no fundamental constraints

which will prevent the RELIEF tagging technique from being implemented in
the ASTFCI facility. There are, however, a number of issues that must be

addressed before such a system is configured. These include the following:

I. Taggin_ with a Picosecond Laser System. The RELIEF tagging apparatus

will be greatly simplified if a picosecond laser system proves to be viable.

It is expected that efficient tagging can be done with such a system using

laser pulse energies on the order of hundreds of millijoules rather than

pulse energies on the order of joules, or possibly tens of joules, which

would be required otherwise. Furthermore, a picosecond source will

substantially reduce problems associated with optical breakdown and window

damage and may produce even more efficient tagging than is possible with

nanosecond sources.

In order to take advantage of the potential offered by picosecond laser

pulses, it will be necessary to construct a stimulated Raman cell with

optimized conversion efficiency and to experimentally determine the

resulting ability to tag flows under conditions similar to those anticipated

in the ASTF CI facility. Optimization of the Raman ist Stokes conversion

involves balancing the effects of several competing processes. This is

accomplished by variation of oxygen pressure, oxygen/buffer gas ratio, cell

length, and multi-pass resonator design. As mentioned previously,

preliminary measurements performed in conjunction with the Princeton X-Ray

Laser Facility, using 70 psec duration pulses, indicate that the Raman gain

is high.
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2. Low Density Operation. The ASTF CI facility is expected to run at a

density as low as 0.048 amagat. This density is a factor of approximately 6

lower than previous densities at which the flow tagging has been operated in

supersonic free jets. In nonmoving atmospheric temperature air, lines have

been observed down to 0.13 amagat, but signal levels were very low. With a

combination of larger tagging volumes and higher tagging efficiency, it is

expected that densities substantially lower than 0.048 amagat can be

observed. However, this needs to be confirmed in laboratory experiments.

One issue of concern is the role that collisional processes may play in both

tagging and interrogation. For example, if many rotational reorientation

collisions occur during either the tagging or interrogation step, then more

efficient tagging and more efficient interrogation are possible. This may

be occurring at high densities where the collision rate is fast enough

during the i0 nsec tagging or interrogation time. At low densities,

collisions will not be a factor and any enhancement due to this effect will

be lost. If this effect is occurring, it means that the collected light is

a nonlinear function of the pressure. Experiments to establish whether that

is the case need to be done since that affects our scaling projection. The

use of picosecond lasers with broad bandwidth to simultaneously pump many

rotational states may alleviate this problem in the tagging step. In the

interrogation step, however, one may find that a long pulse interrogation

laser or an interrogation laser frequency shifted to the vicinity of 185 nm

will give significantly higher signals.

3. Vibrational Relaxation Measurements. Measurements

underway to assure that there will not be a large

vibrationally excited oxygen in the tagging region due

temperature in the plenum. These experiments will also

are currently

percentage of

to the high

identify the

vibrational lifetime of oxygen molecules in the presence of water vapor and

other species so that the maximum time between tagging and interrogation can

be established once the constituents of the air are well known.

4. Development of the Lens and Camera Systems. The particular need to

achieve high collection efficiency and good spatial resolution means that

the lens collection system has to be well matched to the overall system
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geometry. The possibility of using a slanted image plane to extend the

field-of-view of the lens system needs to be examined and the practical

collection and throughput efficiency of such lens need to be measured. The

size of the collection lens will be determined by the signal levels at the

low pressure limit. Since the cost of the camera system is strongly

dependent on the lens size, experiments must be done to determine the

smallest collection aperture necessary. The laboratory tests will be

conducted using the 150 mm collection lens and a single camera system. The

pre-facility test camera system will have to be designed based on the

laboratory test results.

It is recommended that the following series of laboratory tests be conducted

to address these issues:

A.

i.

Laboratory Tests

Optimization of flow tagging with picosecond pulses.

are as follows:

a)

b)

c)

d)

The steps involved

Optimization of Raman cell conversion.

Comparison with nanosecond flow tagging efficiency.

Determination of optimum intensity for flow tagging as a function

of density.

Measurement of the gas, particle, and window breakdown thresholds

with the tagging system.

ii.

b)

c)

Determine the characteristics of lasers required to perform the

interrogation step required for velocity measurements over the full

operating range of ASTF CI facility.

a) Energy requirements for tagging of long lines and multiple

crosses.

ArF 193 nm interrogation fluence at operating conditions,

particularly at low density.

Investigation of the use of D 2 Raman cell for conversion of

interrogation wavelength to 182.5 nm. Examine trade-off of higher

fluorescence yield for lower laser fluence.
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Determination of camera/lens requirements.

a) Using results of (i) and (ii) above, determine lens collection

efficiency requirements.

b) Using data from (iiia) above, and resolution requirements, design

an optimized camera/lens system for capturing the maximum field-

of-view.

iv. System integration and demonstration.

Upon completion of the tests of the three basic components,

laboratory-scale instrumentation simulating the ASTF C1 system as

closely as possible should be assembled. This system will be used

to write and interrogate long lines including, perhaps, one or two

crossing points using laser intensities and camera collection

efficiencies comparable to that of a full-scale system. Line

brightness, sufficient to perform accurate velocity measurements

over the operating range of ASTF C1 should be verified. Velocity

measurements at supersonic speeds for at least one or two crossing

points could be done using a small laboratory flow facility.

B. Pre-Facility Tests

Following these laboratory tests, pre-facility tests need to be done with

scaled up systems using a geometry which is identical to that to be

installed in the C1 test cell. These pre-facility tests will require that

a high energy picosecond source be used so that multiple lines can

simultaneously be written to establish the viability of simultaneous

multiple point interrogation. For these pre-laboratory tests, a high-power

injection-locked argon-fluoride laser will be required. In addition, at

least one, and preferably two, low f number, high-sensitivity camera systems

need to be incorporated into the set up. Since the critical factor for the

measurement is the temperature and density of the flow, many tests can be

done using a temperature and pressure controlled test chamber to simulate

the facility. As a practical matter, even the temperature control is not as

important as is the density and gas mixture. At some point, however, it

will be important to check what the effect of a high-temperature turbulent

boundary layer will be on the operation of this device and establish what
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the practical window damage limitations will be and other operating
constraints.

Equipment Required for the Laboratory Tests

A. Equipment required for the test program:

I) 150 mJ, I00 picosecond Nd:Yag laser and upconversion optics.

(Continuum Active/Active/Passive picosecond laser and doubling

crystal and optics -- $125 K).

2) High pressure 02 Raman shifter (built at Princeton -- $5K).

3) Lens and camera system (ITT 40 mm double microchannel plate

intensified and fiber coupled camera -- $40 K, Nye Optical 150 mm

f/l.4 collection lens -- $4.1K).

4) Low pressure test chamber (built at Princeton -- $I0 K).

5) 150 mJ ArF injection-locked laser (Lambda Physik LPX 150 - $160 K).

6) D 2 Raman shifter for 185 nm tests (built at Princeton -- $15 K).

B. Added equipment for the pre-facility tests (size and cost depend on the

outcome of the laboratory tests).

i) 400-800 mj, I00 picosecond Nd:YAG laser system.

2) Second lens and camera system.

3) I joule ArF interrogation laser (may or may not be injection-locked

depending on D 2 Raman cell results).

Recommended vendors and more complete specifications for the above equipment

can be found in Appendix A.
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TABLE II

Tensile Strength - CFQ

20Oc

300°C

450Oc

600Oc

750Oc

900Oc

1,000°C

Tensile Strength (psi)

7,100

9,600

10,200

10,700

ii,000

11,800

12 200

7,200

8 700

9 I00

9 500

I0 I00

i0 800

Poisson's Ratio

0.170

0 175

0 180

0 184

0 187

0 190

0 192

0.170

0.172

0.179

0.188

0.194

0.200

SOURCE: GE CORNING GE COKNING



48

ArF LASER

t

YAG
LASER

CAMERA [_

J
WIND TUNNEL

OXYGEN RAMAN SHIFTER

RAMAN CELL FLOW TAGGING SETUP

©

Figure i. RELIEF flow tagging set-up with Nd:YAG laser for tagging,

ArF laser for interrogation, and camera.
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Figure 6. Possible tagging configuration to generate 24
simultaneous velocity measurements.
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APPENDIXA
RECOMMF/qDED VENDOR LIST WITH SPECIFICATION/COST ESTIMATES

FOR ASTF CI RELIEF VELOCIMETRY INSTRUMENTATION

I. Camera Systems:

ITT Electro-Optics Product Division
3700 E. Pontiac St.

Fort Wayne, IN 46803

219/423-4341
Contact: Richard Hertel

Phase 1 -- Single camera as below:

Description: 40 mm format, dual intensified camera system consisting

of intensifier, fiber taper to Cohu CCD array camera,

and gatable power supply.

Specifications:

I) 40 mm F4150 Dual Microchannel Plate Intensifier

a. S-20 spectral response

b. 20 line pairs/mm resolution

c. 106 luminous gain

2) Cohu CCD Camera

3) Intensifier Power Supply: min 200 nsec Off-On-Off gate duration.

Approximate Cost: $40 K

Phase 2/3: Additional camera as above or 75 mm format camera depending on

outcome of laboratory test results.
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II. Tunable ArF Interrogation Laser:

Lambda-Physik
289 Great Road

Acton, MA 01720

800/262-1100

Contact: Ron Schaefer

Phase I:

Description: LPX-150 Tunable Excimer Laser System

Specifications:

i) Series I00 oscillator/Series 200 amplifier

2) 150-200 mJ/pulse @193 nm, 15 Hz

3) Linewidth approximately I cm -I

4) Pulse duration: 15 nsec

5) Trigger jitter: 2 nsec

6) Minimum trigger delay: 2 sec.

Approximate Cost: $160,000

Phase 2/3:

Description: Same as above plus Series 200 pre-amplifier and Series

300 final amplifier.

Specifications: 1.3 Joules/pulse @193 nm, 15 Hz.

Approximate Cost: $310,000

Alternate: Phase I System and Series 300 amplifier only.

Specifications: 800 mJ/pulse @193 nm, 15 Hz

Approximate Cost: $242,000
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III. Mode-Locked Nd:YAG Tagging Laser

Continuum

3150 Central Expressway

Santa Clara, CA 95052

408/727-3240
Contact: John Black

East Cost: David Kemp

508/624-4454

Phase i:

Description: Active/Active/Passive Mode-Locked Nd:YAG Laser System

Specifications:

I) Pulse duration: i00 psec

2) Pulse energy: 150 mJ @ 1.06 microns, 15 Hz

3) Maximum Repetition Rate: 20 Hz
4) Line width: 1 cm "I

5) Jitter: <25 nsec

Cost: $Ii0 K

Phase 2/3

Description: High power picosecond oscillator/amplifier, Nd:YAG laser

system: the size of the system depends on laboratory
test results.
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IV. Lens Systems

Nye Optical Co.

8781 Troy Street

Spring Valley, CA 92077

619/466-2200

Contact: Richard Nye

Phase i:

Description: 150 mm f/l.4 lens system.

Specifications:

i) Spectral Transmission: MgF 2 protected UV enhanced aluminum.

Spectral range: 1800 A to 4.5 microns

2) Angular field: 16 °

3) Resolution: 35 line pairs/mm

Cost: $4,100

Phase 2/3: Depends on laboratory test results.

V. Window Materials

Heraeus Amersil, Inc.

650 Jernees Mill Road

Sayreville, NJ 08872

201/254-2500

Contact: A1 Kreutzer

Suggested window material is Suprasil-Z fused silica. Available in

large variety of standard sizes. Custom windows manufactured on

request.
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